top of page

Introduction to Trigonometry

📚 Concepts


📚 Trigonometry

Trigonometry is the branch of mathematics that deals with the relationship between angles and sides of right-angled triangles.


📚 Right-Angled Triangle

Trigonometric concepts apply only to right-angled triangles — triangles with one angle exactly equal to 90°.


📚 Trigonometric Ratio

A trigonometric ratio is the ratio of two sides of a right-angled triangle with respect to an acute angle (𝜃). These ratios are used to calculate unknown sides or angles.


📚 Parts of a Right-Angled Triangle

  • Opposite side (Perpendicular): The side opposite the angle 𝜃

  • Adjacent side (Base): The side next to angle 𝜃

  • Hypotenuse: The side opposite the right angle; longest side


📚 Trigonometric Ratios Names

There are six standard trigonometric ratios:

  • sin 𝜃 = Opposite ⁄ Hypotenuse

  • cos 𝜃 = Adjacent ⁄ Hypotenuse

  • tan 𝜃 = Opposite ⁄ Adjacent

  • cosec 𝜃, sec 𝜃, and cot 𝜃 are their reciprocals


📚 Reciprocal Ratios

Each of the primary trigonometric ratios has a reciprocal:

  • cosec 𝜃 = 1 ⁄ sin 𝜃

  • sec 𝜃 = 1 ⁄ cos 𝜃

  • cot 𝜃 = 1 ⁄ tan 𝜃


📚 Quotient Identities

  • tan 𝜃 = sin 𝜃 ⁄ cos 𝜃

  • cot 𝜃 = cos 𝜃 ⁄ sin 𝜃


📚 Range of Values (For 0° < 𝜃 < 90°)

  • 0 < sin 𝜃 ≤ 1

  • 0 < cos 𝜃 ≤ 1

  • 0 < tan 𝜃 < ∞

  • cot 𝜃 > 0

  • sec 𝜃 ≥ 1

  • cosec 𝜃 ≥ 1


📚 Trigonometric Ratios of Standard Angles


The values of trigonometric ratios for angles 0°, 30°, 45°, 60°, and 90° are commonly used and form the trigonometric table.


✍️ Formulas


✍️ Basic Trigonometric Ratios 

In ∆ABC, right-angled at B, angle 𝜃 at A

  • 𝑠𝑖𝑛 𝜃 = 𝐵𝐶 ⁄ 𝐴𝐶

  • 𝑐𝑜𝑠 𝜃 = 𝐴𝐵 ⁄ 𝐴𝐶

  • 𝑡𝑎𝑛 𝜃 = 𝐵𝐶 ⁄ 𝐴𝐵


✍️ Reciprocal Ratios

  • 𝑐𝑜𝑠𝑒𝑐 𝜃 = 𝐴𝐶 ⁄ 𝐵𝐶 = 1 ⁄ 𝑠𝑖𝑛 𝜃

  • 𝑠𝑒𝑐 𝜃 = 𝐴𝐶 ⁄ 𝐴𝐵 = 1 ⁄ 𝑐𝑜𝑠 𝜃

  • 𝑐𝑜𝑡 𝜃 = 𝐴𝐵 ⁄ 𝐵𝐶 = 1 ⁄ 𝑡𝑎𝑛 𝜃


✍️ Quotient Identities

  • 𝑡𝑎𝑛 𝜃 = 𝑠𝑖𝑛 𝜃 ⁄ 𝑐𝑜𝑠 𝜃

  • 𝑐𝑜𝑡 𝜃 = 𝑐𝑜𝑠 𝜃 ⁄ 𝑠𝑖𝑛 𝜃


✍️ Fundamental Trigonometric Identities

  • 𝑠𝑖𝑛² 𝜃 + 𝑐𝑜𝑠² 𝜃 = 1

  • 1 + 𝑡𝑎𝑛² 𝜃 = 𝑠𝑒𝑐² 𝜃

  • 1 + 𝑐𝑜𝑡² 𝜃 = 𝑐𝑜𝑠𝑒𝑐² 𝜃


✍️ Trigonometric Table

𝜃

30°

45°

60°

90°

𝑠𝑖𝑛 𝜃

0

½

1⁄√2

√3⁄2

1

𝑐𝑜𝑠 𝜃

1

√3⁄2

1⁄√2

½

0

𝑡𝑎𝑛 𝜃

0

1⁄√3

1

√3

𝑐𝑜𝑡 𝜃

√3

1

1⁄√3

0

𝑠𝑒𝑐 𝜃

1

2⁄√3

√2

2

𝑐𝑜𝑠𝑒𝑐 𝜃

2

√2

2⁄√3

1


bottom of page